{-# LANGUAGE CPP #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE NoStarIsType #-}

module Cardano.Ledger.Binary.Encoding.EncCBOR (
  EncCBOR (..),
  withWordSize,
  PreEncoded (..),
  toByronCBOR,

  -- * Size of expressions
  Range (..),
  szEval,
  Size,
  Case (..),
  caseValue,
  LengthOf (..),
  SizeOverride (..),
  isTodo,
  szCases,
  szLazy,
  szGreedy,
  szForce,
  szWithCtx,
  szSimplify,
  apMono,
  szBounds,

  -- ** Crypto
  encodedVerKeyDSIGNSizeExpr,
  encodedSignKeyDSIGNSizeExpr,
  encodedSigDSIGNSizeExpr,
  encodedSignedDSIGNSizeExpr,
  encodedVerKeyKESSizeExpr,
  encodedSignKeyKESSizeExpr,
  encodedSigKESSizeExpr,
  encodedVerKeyVRFSizeExpr,
  encodedSignKeyVRFSizeExpr,
  encodedCertVRFSizeExpr,
)
where

import Cardano.Crypto.DSIGN.Class (
  DSIGNAlgorithm,
  SigDSIGN,
  SignKeyDSIGN,
  SignedDSIGN,
  VerKeyDSIGN,
  sizeSigDSIGN,
  sizeSignKeyDSIGN,
  sizeVerKeyDSIGN,
 )
import Cardano.Crypto.Hash.Class (
  Hash (..),
  HashAlgorithm,
  hashToBytes,
  sizeHash,
 )
import Cardano.Crypto.KES.Class (
  KESAlgorithm,
  SigKES,
  SignKeyKES,
  VerKeyKES,
  sizeSigKES,
  sizeSignKeyKES,
  sizeVerKeyKES,
 )
import Cardano.Crypto.VRF.Class (
  CertVRF,
  CertifiedVRF (..),
  OutputVRF (..),
  SignKeyVRF,
  VRFAlgorithm,
  VerKeyVRF,
  sizeCertVRF,
  sizeOutputVRF,
  sizeSignKeyVRF,
  sizeVerKeyVRF,
 )
import Cardano.Crypto.VRF.Mock (MockVRF)
import qualified Cardano.Crypto.VRF.Praos as Praos
import Cardano.Crypto.VRF.Simple (SimpleVRF)
import Cardano.Ledger.Binary.Crypto
import Cardano.Ledger.Binary.Encoding.Encoder
import Cardano.Ledger.Binary.Version (Version, byronProtVer, getVersion64)
import Cardano.Slotting.Block (BlockNo (..))
import Cardano.Slotting.Slot (
  EpochInterval (..),
  EpochNo (..),
  EpochSize (..),
  SlotNo (..),
  WithOrigin (..),
 )
import Cardano.Slotting.Time (SystemStart (..))
import Codec.CBOR.ByteArray (ByteArray (..))
import Codec.CBOR.ByteArray.Sliced (SlicedByteArray (SBA), fromByteArray)
import qualified Codec.CBOR.Encoding as C (Encoding (..))
import Codec.CBOR.Term (Term (..))
import qualified Codec.Serialise as Serialise (Serialise (encode))
import Control.Category (Category ((.)))
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as BS.Lazy
import qualified Data.ByteString.Short as SBS (length)
#if MIN_VERSION_bytestring(0,11,1)
import Data.ByteString.Short (ShortByteString(SBS))
#else
import Data.ByteString.Short.Internal (ShortByteString(SBS))
#endif
import qualified Cardano.Binary as Plain (Encoding, ToCBOR (..))
import Data.Fixed (Fixed (..))
import Data.Foldable (toList)
import Data.Functor.Foldable (cata, project)
import Data.IP (IPv4, IPv6)
import Data.Int (Int16, Int32, Int64, Int8)
import Data.List.NonEmpty (NonEmpty)
import qualified Data.Map.Strict as Map
import qualified Data.Maybe.Strict as SMaybe
import qualified Data.Primitive.ByteArray as Prim (ByteArray (..))
import Data.Ratio (Ratio)
import qualified Data.Sequence as Seq
import qualified Data.Sequence.Strict as SSeq
import qualified Data.Set as Set
import Data.Tagged (Tagged (..))
import Data.Text (Text)
import qualified Data.Text as Text
import Data.Text.Lazy.Builder (Builder)
import Data.Time.Clock (UTCTime (..))
import Data.Typeable (Proxy (..), TypeRep, Typeable, typeRep)
import qualified Data.VMap as VMap
import qualified Data.Vector as V
import qualified Data.Vector.Primitive as VP
import qualified Data.Vector.Storable as VS
import qualified Data.Vector.Unboxed as VU
import Data.Void (Void, absurd)
import Data.Word (Word16, Word32, Word64, Word8)
import Foreign.Storable (sizeOf)
import Formatting (bprint, build, shown, stext)
import qualified Formatting.Buildable as B (Buildable (..))
import Numeric.Natural (Natural)
import qualified PlutusLedgerApi.V1 as PV1
import qualified PlutusLedgerApi.V2 as PV2
import qualified PlutusLedgerApi.V3 as PV3
import Prelude hiding (encodeFloat, (.))

#if MIN_VERSION_recursion_schemes(5,2,0)
import Data.Fix (Fix(..))
#else
import Data.Functor.Foldable (Fix(..))
#endif

class Typeable a => EncCBOR a where
  encCBOR :: a -> Encoding
  default encCBOR :: Plain.ToCBOR a => a -> Encoding
  encCBOR = Encoding -> Encoding
fromPlainEncoding forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. ToCBOR a => a -> Encoding
Plain.toCBOR

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
  encodedSizeExpr = forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
todo

  encodedListSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
  encodedListSizeExpr = forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
defaultEncodedListSizeExpr

-- | A type used to represent the length of a value in 'Size' computations.
newtype LengthOf xs = LengthOf xs

instance Typeable xs => EncCBOR (LengthOf xs) where
  encCBOR :: LengthOf xs -> Encoding
encCBOR = forall a. HasCallStack => [Char] -> a
error [Char]
"The `LengthOf` type cannot be encoded!"

-- | Default size expression for a list type.
defaultEncodedListSizeExpr ::
  forall a.
  EncCBOR a =>
  (forall t. EncCBOR t => Proxy t -> Size) ->
  Proxy [a] ->
  Size
defaultEncodedListSizeExpr :: forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
defaultEncodedListSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy [a]
_ =
  Size
2 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf [a])) forall a. Num a => a -> a -> a
* forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)

newtype PreEncoded = PreEncoded {PreEncoded -> ByteString
unPreEncoded :: BS.ByteString}

instance EncCBOR PreEncoded where
  encCBOR :: PreEncoded -> Encoding
encCBOR = ByteString -> Encoding
encodePreEncoded forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. PreEncoded -> ByteString
unPreEncoded

instance EncCBOR Version where
  encCBOR :: Version -> Encoding
encCBOR = Version -> Encoding
encodeVersion
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Version -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
f Proxy Version
px = forall t. EncCBOR t => Proxy t -> Size
f (Version -> Word64
getVersion64 forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Proxy Version
px)

-- | Convert a versioned `EncCBOR` instance to a plain `Plain.Encoding` using Byron
-- protocol version.
toByronCBOR :: EncCBOR a => a -> Plain.Encoding
toByronCBOR :: forall a. EncCBOR a => a -> Encoding
toByronCBOR = Version -> Encoding -> Encoding
toPlainEncoding Version
byronProtVer forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. EncCBOR a => a -> Encoding
encCBOR

--------------------------------------------------------------------------------
-- Size expressions
--------------------------------------------------------------------------------

(.:) :: (c -> d) -> (a -> b -> c) -> (a -> b -> d)
c -> d
f .: :: forall c d a b. (c -> d) -> (a -> b -> c) -> a -> b -> d
.: a -> b -> c
g = \a
x b
y -> c -> d
f (a -> b -> c
g a
x b
y)

-- | Expressions describing the statically-computed size bounds on
--   a type's possible values.
type Size = Fix SizeF

-- | The base functor for @Size@ expressions.
data SizeF t
  = -- | Sum of two sizes.
    AddF t t
  | -- | Product of two sizes.
    MulF t t
  | -- | Difference of two sizes.
    SubF t t
  | -- | Absolute value of a size.
    AbsF t
  | -- | Negation of a size.
    NegF t
  | -- | Signum of a size.
    SgnF t
  | -- | Case-selection for sizes. Used for sum types.
    CasesF [Case t]
  | -- | A constant value.
    ValueF Natural
  | -- | Application of a monotonic function to a size.
    ApF Text (Natural -> Natural) t
  | -- | A suspended size calculation ("thunk"). This is used to delay the
    --   computation of a size until some later point, which is useful for
    --   progressively building more detailed size estimates for a type
    --   from the outside in. For example, `szLazy` can be followed by
    --   applications of `szForce` to reveal more detailed expressions
    --   describing the size bounds on a type.
    forall a. EncCBOR a => TodoF (forall x. EncCBOR x => Proxy x -> Size) (Proxy a)

instance Functor SizeF where
  fmap :: forall a b. (a -> b) -> SizeF a -> SizeF b
fmap a -> b
f = \case
    AddF a
x a
y -> forall t. t -> t -> SizeF t
AddF (a -> b
f a
x) (a -> b
f a
y)
    MulF a
x a
y -> forall t. t -> t -> SizeF t
MulF (a -> b
f a
x) (a -> b
f a
y)
    SubF a
x a
y -> forall t. t -> t -> SizeF t
SubF (a -> b
f a
x) (a -> b
f a
y)
    AbsF a
x -> forall t. t -> SizeF t
AbsF (a -> b
f a
x)
    NegF a
x -> forall t. t -> SizeF t
NegF (a -> b
f a
x)
    SgnF a
x -> forall t. t -> SizeF t
SgnF (a -> b
f a
x)
    CasesF [Case a]
xs -> forall t. [Case t] -> SizeF t
CasesF (forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) [Case a]
xs)
    ValueF Natural
x -> forall t. Natural -> SizeF t
ValueF Natural
x
    ApF Text
n Natural -> Natural
g a
x -> forall t. Text -> (Natural -> Natural) -> t -> SizeF t
ApF Text
n Natural -> Natural
g (a -> b
f a
x)
    TodoF forall t. EncCBOR t => Proxy t -> Size
g Proxy a
x -> forall t a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> SizeF t
TodoF forall t. EncCBOR t => Proxy t -> Size
g Proxy a
x

instance Num (Fix SizeF) where
  + :: Size -> Size -> Size
(+) = forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix forall c d a b. (c -> d) -> (a -> b -> c) -> a -> b -> d
.: forall t. t -> t -> SizeF t
AddF
  * :: Size -> Size -> Size
(*) = forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix forall c d a b. (c -> d) -> (a -> b -> c) -> a -> b -> d
.: forall t. t -> t -> SizeF t
MulF
  (-) = forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix forall c d a b. (c -> d) -> (a -> b -> c) -> a -> b -> d
.: forall t. t -> t -> SizeF t
SubF
  negate :: Size -> Size
negate = forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. t -> SizeF t
NegF
  abs :: Size -> Size
abs = forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. t -> SizeF t
AbsF
  signum :: Size -> Size
signum = forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. t -> SizeF t
SgnF
  fromInteger :: Integer -> Size
fromInteger = forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. Natural -> SizeF t
ValueF forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Num a => Integer -> a
fromInteger

instance B.Buildable t => B.Buildable (SizeF t) where
  build :: SizeF t -> Builder
build SizeF t
x_ =
    let showp2 :: (B.Buildable a, B.Buildable b) => a -> Text -> b -> Builder
        showp2 :: forall a b. (Buildable a, Buildable b) => a -> Text -> b -> Builder
showp2 = forall a. Format Builder a -> a
bprint (Format (a -> Text -> b -> Builder) (a -> Text -> b -> Builder)
"(" forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (Text -> b -> Builder) (Text -> b -> Builder)
" " forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall r. Format r (Text -> r)
stext forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (b -> Builder) (b -> Builder)
" " forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
")")
     in case SizeF t
x_ of
          AddF t
x t
y -> forall a b. (Buildable a, Buildable b) => a -> Text -> b -> Builder
showp2 t
x Text
"+" t
y
          MulF t
x t
y -> forall a b. (Buildable a, Buildable b) => a -> Text -> b -> Builder
showp2 t
x Text
"*" t
y
          SubF t
x t
y -> forall a b. (Buildable a, Buildable b) => a -> Text -> b -> Builder
showp2 t
x Text
"-" t
y
          NegF t
x -> forall a. Format Builder a -> a
bprint (Format (t -> Builder) (t -> Builder)
"-" forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build) t
x
          AbsF t
x -> forall a. Format Builder a -> a
bprint (Format (t -> Builder) (t -> Builder)
"|" forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
"|") t
x
          SgnF t
x -> forall a. Format Builder a -> a
bprint (Format (t -> Builder) (t -> Builder)
"sgn(" forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
")") t
x
          CasesF [Case t]
xs ->
            forall a. Format Builder a -> a
bprint (Format (Builder -> Builder) (Builder -> Builder)
"{ " forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
"}") forall a b. (a -> b) -> a -> b
$ forall (t :: Type -> Type) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (forall a. Format Builder a -> a
bprint (forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
" ")) [Case t]
xs
          ValueF Natural
x -> forall a. Format Builder a -> a
bprint forall a r. Show a => Format r (a -> r)
shown (forall a. Integral a => a -> Integer
toInteger Natural
x)
          ApF Text
n Natural -> Natural
_ t
x -> forall a. Format Builder a -> a
bprint (forall r. Format r (Text -> r)
stext forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (t -> Builder) (t -> Builder)
"(" forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
")") Text
n t
x
          TodoF forall t. EncCBOR t => Proxy t -> Size
_ Proxy a
x -> forall a. Format Builder a -> a
bprint (Format (TypeRep -> Builder) (TypeRep -> Builder)
"(_ :: " forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Show a => Format r (a -> r)
shown forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format Builder Builder
")") (forall {k} (proxy :: k -> Type) (a :: k).
Typeable a =>
proxy a -> TypeRep
typeRep Proxy a
x)

instance B.Buildable (Fix SizeF) where
  build :: Size -> Builder
build Size
x = forall a. Format Builder a -> a
bprint forall a r. Buildable a => Format r (a -> r)
build (forall t. Recursive t => t -> Base t t
project @(Fix _) Size
x)

-- | Create a case expression from individual cases.
szCases :: [Case Size] -> Size
szCases :: [Case Size] -> Size
szCases = forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. [Case t] -> SizeF t
CasesF

-- | An individual labeled case.
data Case t
  = Case Text t
  deriving (forall a b. a -> Case b -> Case a
forall a b. (a -> b) -> Case a -> Case b
forall (f :: Type -> Type).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Case b -> Case a
$c<$ :: forall a b. a -> Case b -> Case a
fmap :: forall a b. (a -> b) -> Case a -> Case b
$cfmap :: forall a b. (a -> b) -> Case a -> Case b
Functor)

-- | Discard the label on a case.
caseValue :: Case t -> t
caseValue :: forall t. Case t -> t
caseValue (Case Text
_ t
x) = t
x

instance B.Buildable t => B.Buildable (Case t) where
  build :: Case t -> Builder
build (Case Text
n t
x) = forall a. Format Builder a -> a
bprint (forall r. Format r (Text -> r)
stext forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (t -> Builder) (t -> Builder)
"=" forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Buildable a => Format r (a -> r)
build) Text
n t
x

-- | A range of values. Should satisfy the invariant @forall x. lo x <= hi x@.
data Range b = Range
  { forall b. Range b -> b
lo :: b
  , forall b. Range b -> b
hi :: b
  }

-- | The @Num@ instance for @Range@ uses interval arithmetic. Note that the
--   @signum@ method is not lawful: if the interval @x@ includes 0 in its
--   interior but is not symmetric about 0, then @abs x * signum x /= x@.
instance (Ord b, Num b) => Num (Range b) where
  Range b
x + :: Range b -> Range b -> Range b
+ Range b
y = Range {lo :: b
lo = forall b. Range b -> b
lo Range b
x forall a. Num a => a -> a -> a
+ forall b. Range b -> b
lo Range b
y, hi :: b
hi = forall b. Range b -> b
hi Range b
x forall a. Num a => a -> a -> a
+ forall b. Range b -> b
hi Range b
y}
  Range b
x * :: Range b -> Range b -> Range b
* Range b
y =
    let products :: [b]
products = [b
u forall a. Num a => a -> a -> a
* b
v | b
u <- [forall b. Range b -> b
lo Range b
x, forall b. Range b -> b
hi Range b
x], b
v <- [forall b. Range b -> b
lo Range b
y, forall b. Range b -> b
hi Range b
y]]
     in Range {lo :: b
lo = forall (t :: Type -> Type) a. (Foldable t, Ord a) => t a -> a
minimum [b]
products, hi :: b
hi = forall (t :: Type -> Type) a. (Foldable t, Ord a) => t a -> a
maximum [b]
products}
  Range b
x - :: Range b -> Range b -> Range b
- Range b
y = Range {lo :: b
lo = forall b. Range b -> b
lo Range b
x forall a. Num a => a -> a -> a
- forall b. Range b -> b
hi Range b
y, hi :: b
hi = forall b. Range b -> b
hi Range b
x forall a. Num a => a -> a -> a
- forall b. Range b -> b
lo Range b
y}
  negate :: Range b -> Range b
negate Range b
x = Range {lo :: b
lo = forall a. Num a => a -> a
negate (forall b. Range b -> b
hi Range b
x), hi :: b
hi = forall a. Num a => a -> a
negate (forall b. Range b -> b
lo Range b
x)}
  abs :: Range b -> Range b
abs Range b
x =
    if
      | forall b. Range b -> b
lo Range b
x forall a. Ord a => a -> a -> Bool
<= b
0 Bool -> Bool -> Bool
&& forall b. Range b -> b
hi Range b
x forall a. Ord a => a -> a -> Bool
>= b
0 -> Range {lo :: b
lo = b
0, hi :: b
hi = forall a. Ord a => a -> a -> a
max (forall b. Range b -> b
hi Range b
x) (forall a. Num a => a -> a
negate forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
lo Range b
x)}
      | forall b. Range b -> b
lo Range b
x forall a. Ord a => a -> a -> Bool
<= b
0 Bool -> Bool -> Bool
&& forall b. Range b -> b
hi Range b
x forall a. Ord a => a -> a -> Bool
<= b
0 -> Range {lo :: b
lo = forall a. Num a => a -> a
negate (forall b. Range b -> b
hi Range b
x), hi :: b
hi = forall a. Num a => a -> a
negate (forall b. Range b -> b
lo Range b
x)}
      | Bool
otherwise -> Range b
x
  signum :: Range b -> Range b
signum Range b
x = Range {lo :: b
lo = forall a. Num a => a -> a
signum (forall b. Range b -> b
lo Range b
x), hi :: b
hi = forall a. Num a => a -> a
signum (forall b. Range b -> b
hi Range b
x)}
  fromInteger :: Integer -> Range b
fromInteger Integer
n = Range {lo :: b
lo = forall a. Num a => Integer -> a
fromInteger Integer
n, hi :: b
hi = forall a. Num a => Integer -> a
fromInteger Integer
n}

instance B.Buildable (Range Natural) where
  build :: Range Natural -> Builder
build Range Natural
r = forall a. Format Builder a -> a
bprint (forall a r. Show a => Format r (a -> r)
shown forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Format (Integer -> Builder) (Integer -> Builder)
".." forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a r. Show a => Format r (a -> r)
shown) (forall a. Integral a => a -> Integer
toInteger forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
lo Range Natural
r) (forall a. Integral a => a -> Integer
toInteger forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
hi Range Natural
r)

-- | Fully evaluate a size expression by applying the given function to any
--   suspended computations. @szEval g@ effectively turns each "thunk"
--   of the form @TodoF f x@ into @g x@, then evaluates the result.
szEval ::
  (forall t. EncCBOR t => (Proxy t -> Size) -> Proxy t -> Range Natural) ->
  Size ->
  Range Natural
szEval :: (forall t.
 EncCBOR t =>
 (Proxy t -> Size) -> Proxy t -> Range Natural)
-> Size -> Range Natural
szEval forall t.
EncCBOR t =>
(Proxy t -> Size) -> Proxy t -> Range Natural
doit = forall t a. Recursive t => (Base t a -> a) -> t -> a
cata forall a b. (a -> b) -> a -> b
$ \case
  AddF Range Natural
x Range Natural
y -> Range Natural
x forall a. Num a => a -> a -> a
+ Range Natural
y
  MulF Range Natural
x Range Natural
y -> Range Natural
x forall a. Num a => a -> a -> a
* Range Natural
y
  SubF Range Natural
x Range Natural
y -> Range Natural
x forall a. Num a => a -> a -> a
- Range Natural
y
  NegF Range Natural
x -> forall a. Num a => a -> a
negate Range Natural
x
  AbsF Range Natural
x -> forall a. Num a => a -> a
abs Range Natural
x
  SgnF Range Natural
x -> forall a. Num a => a -> a
signum Range Natural
x
  CasesF [Case (Range Natural)]
xs ->
    Range
      { lo :: Natural
lo = forall (t :: Type -> Type) a. (Foldable t, Ord a) => t a -> a
minimum (forall a b. (a -> b) -> [a] -> [b]
map (forall b. Range b -> b
lo forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. Case t -> t
caseValue) [Case (Range Natural)]
xs)
      , hi :: Natural
hi = forall (t :: Type -> Type) a. (Foldable t, Ord a) => t a -> a
maximum (forall a b. (a -> b) -> [a] -> [b]
map (forall b. Range b -> b
hi forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. Case t -> t
caseValue) [Case (Range Natural)]
xs)
      }
  ValueF Natural
x -> Range {lo :: Natural
lo = Natural
x, hi :: Natural
hi = Natural
x}
  ApF Text
_ Natural -> Natural
f Range Natural
x -> Range {lo :: Natural
lo = Natural -> Natural
f (forall b. Range b -> b
lo Range Natural
x), hi :: Natural
hi = Natural -> Natural
f (forall b. Range b -> b
hi Range Natural
x)}
  TodoF forall t. EncCBOR t => Proxy t -> Size
f Proxy a
x -> forall t.
EncCBOR t =>
(Proxy t -> Size) -> Proxy t -> Range Natural
doit forall t. EncCBOR t => Proxy t -> Size
f Proxy a
x

-- | Evaluate the expression lazily, by immediately creating a thunk
--    that will evaluate its contents lazily.
--
-- > ghci> putStrLn $ pretty $ szLazy (Proxy @TxAux)
-- > (_ :: TxAux)
szLazy :: EncCBOR a => (Proxy a -> Size)
szLazy :: forall t. EncCBOR t => Proxy t -> Size
szLazy = forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
todo (forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
szLazy)

-- | Evaluate an expression greedily. There may still be thunks in the
--    result, for types that did not provide a custom 'encodedSizeExpr' method
--    in their 'EncCBOR' instance.
--
-- > ghci> putStrLn $ pretty $ szGreedy (Proxy @TxAux)
-- > (0 + { TxAux=(2 + ((0 + (((1 + (2 + ((_ :: LengthOf [TxIn]) * (2 + { TxInUtxo=(2 + ((1 + 34) + { minBound=1 maxBound=5 })) })))) + (2 + ((_ :: LengthOf [TxOut]) * (0 + { TxOut=(2 + ((0 + ((2 + ((2 + withWordSize((((1 + 30) + (_ :: Attributes AddrAttributes)) + 1))) + (((1 + 30) + (_ :: Attributes AddrAttributes)) + 1))) + { minBound=1 maxBound=5 })) + { minBound=1 maxBound=9 })) })))) + (_ :: Attributes ()))) + (_ :: Vector TxInWitness))) })
szGreedy :: EncCBOR a => (Proxy a -> Size)
szGreedy :: forall t. EncCBOR t => Proxy t -> Size
szGreedy = forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
szGreedy

-- | Is this expression a thunk?
isTodo :: Size -> Bool
isTodo :: Size -> Bool
isTodo (Fix (TodoF forall t. EncCBOR t => Proxy t -> Size
_ Proxy a
_)) = Bool
True
isTodo Size
_ = Bool
False

-- | Create a "thunk" that will apply @f@ to @pxy@ when forced.
todo ::
  forall a.
  EncCBOR a =>
  (forall t. EncCBOR t => Proxy t -> Size) ->
  Proxy a ->
  Size
todo :: forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
todo forall t. EncCBOR t => Proxy t -> Size
f Proxy a
pxy = forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix (forall t a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> SizeF t
TodoF forall t. EncCBOR t => Proxy t -> Size
f Proxy a
pxy)

-- | Apply a monotonically increasing function to the expression.
--   There are three cases when applying @f@ to a @Size@ expression:
--      * When applied to a value @x@, compute @f x@.
--      * When applied to cases, apply to each case individually.
--      * In all other cases, create a deferred application of @f@.
apMono :: Text -> (Natural -> Natural) -> Size -> Size
apMono :: Text -> (Natural -> Natural) -> Size -> Size
apMono Text
n Natural -> Natural
f = \case
  Fix (ValueF Natural
x) -> forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix (forall t. Natural -> SizeF t
ValueF (Natural -> Natural
f Natural
x))
  Fix (CasesF [Case Size]
cs) -> forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix (forall t. [Case t] -> SizeF t
CasesF (forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (Text -> (Natural -> Natural) -> Size -> Size
apMono Text
n Natural -> Natural
f)) [Case Size]
cs))
  Size
x -> forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix (forall t. Text -> (Natural -> Natural) -> t -> SizeF t
ApF Text
n Natural -> Natural
f Size
x)

-- | Greedily compute the size bounds for a type, using the given context to
--   override sizes for specific types.
szWithCtx :: EncCBOR a => Map.Map TypeRep SizeOverride -> Proxy a -> Size
szWithCtx :: forall a. EncCBOR a => Map TypeRep SizeOverride -> Proxy a -> Size
szWithCtx Map TypeRep SizeOverride
ctx Proxy a
pxy = case forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup (forall {k} (proxy :: k -> Type) (a :: k).
Typeable a =>
proxy a -> TypeRep
typeRep Proxy a
pxy) Map TypeRep SizeOverride
ctx of
  Maybe SizeOverride
Nothing -> Size
normal
  Just SizeOverride
override -> case SizeOverride
override of
    SizeConstant Size
sz -> Size
sz
    SizeExpression (forall t. EncCBOR t => Proxy t -> Size) -> Size
f -> (forall t. EncCBOR t => Proxy t -> Size) -> Size
f (forall a. EncCBOR a => Map TypeRep SizeOverride -> Proxy a -> Size
szWithCtx Map TypeRep SizeOverride
ctx)
    SelectCases [Text]
names -> forall t a. Recursive t => (Base t a -> a) -> t -> a
cata ([Text] -> SizeF Size -> Size
selectCase [Text]
names) Size
normal
  where
    -- The non-override case
    normal :: Size
normal = forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr (forall a. EncCBOR a => Map TypeRep SizeOverride -> Proxy a -> Size
szWithCtx Map TypeRep SizeOverride
ctx) Proxy a
pxy

    selectCase :: [Text] -> SizeF Size -> Size
    selectCase :: [Text] -> SizeF Size -> Size
selectCase [Text]
names SizeF Size
orig = case SizeF Size
orig of
      CasesF [Case Size]
cs -> [Text] -> [Case Size] -> Size -> Size
matchCase [Text]
names [Case Size]
cs (forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix SizeF Size
orig)
      SizeF Size
_ -> forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix SizeF Size
orig

    matchCase :: [Text] -> [Case Size] -> Size -> Size
    matchCase :: [Text] -> [Case Size] -> Size -> Size
matchCase [Text]
names [Case Size]
cs Size
orig =
      case forall a. (a -> Bool) -> [a] -> [a]
filter (\(Case Text
name Size
_) -> Text
name forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [Text]
names) [Case Size]
cs of
        [] -> Size
orig
        [Case Text
_ Size
x] -> Size
x
        [Case Size]
cs' -> forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix (forall t. [Case t] -> SizeF t
CasesF [Case Size]
cs')

-- | Override mechanisms to be used with 'szWithCtx'.
data SizeOverride
  = -- | Replace with a fixed @Size@.
    SizeConstant Size
  | -- | Recursively compute the size.
    SizeExpression ((forall a. EncCBOR a => Proxy a -> Size) -> Size)
  | -- | Select only a specific case from a @CasesF@.
    SelectCases [Text]

-- | Simplify the given @Size@, resulting in either the simplified @Size@ or,
--   if it was fully simplified, an explicit upper and lower bound.
szSimplify :: Size -> Either Size (Range Natural)
szSimplify :: Size -> Either Size (Range Natural)
szSimplify = forall t a. Recursive t => (Base t a -> a) -> t -> a
cata forall a b. (a -> b) -> a -> b
$ \case
  TodoF forall t. EncCBOR t => Proxy t -> Size
f Proxy a
pxy -> forall a b. a -> Either a b
Left (forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
todo forall t. EncCBOR t => Proxy t -> Size
f Proxy a
pxy)
  ValueF Natural
x -> forall a b. b -> Either a b
Right (Range {lo :: Natural
lo = Natural
x, hi :: Natural
hi = Natural
x})
  CasesF [Case (Either Size (Range Natural))]
xs -> case forall (t :: Type -> Type) (m :: Type -> Type) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall t. Case t -> t
caseValue [Case (Either Size (Range Natural))]
xs of
    Right [Range Natural]
xs' ->
      forall a b. b -> Either a b
Right (Range {lo :: Natural
lo = forall (t :: Type -> Type) a. (Foldable t, Ord a) => t a -> a
minimum (forall a b. (a -> b) -> [a] -> [b]
map forall b. Range b -> b
lo [Range Natural]
xs'), hi :: Natural
hi = forall (t :: Type -> Type) a. (Foldable t, Ord a) => t a -> a
maximum (forall a b. (a -> b) -> [a] -> [b]
map forall b. Range b -> b
hi [Range Natural]
xs')})
    Left Size
_ -> forall a b. a -> Either a b
Left ([Case Size] -> Size
szCases forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap Either Size (Range Natural) -> Size
toSize) [Case (Either Size (Range Natural))]
xs)
  AddF Either Size (Range Natural)
x Either Size (Range Natural)
y -> (forall a. Num a => a -> a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
binOp forall a. Num a => a -> a -> a
(+) Either Size (Range Natural)
x Either Size (Range Natural)
y
  MulF Either Size (Range Natural)
x Either Size (Range Natural)
y -> (forall a. Num a => a -> a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
binOp forall a. Num a => a -> a -> a
(*) Either Size (Range Natural)
x Either Size (Range Natural)
y
  SubF Either Size (Range Natural)
x Either Size (Range Natural)
y -> (forall a. Num a => a -> a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
binOp (-) Either Size (Range Natural)
x Either Size (Range Natural)
y
  NegF Either Size (Range Natural)
x -> (forall a. Num a => a -> a)
-> Either Size (Range Natural) -> Either Size (Range Natural)
unOp forall a. Num a => a -> a
negate Either Size (Range Natural)
x
  AbsF Either Size (Range Natural)
x -> (forall a. Num a => a -> a)
-> Either Size (Range Natural) -> Either Size (Range Natural)
unOp forall a. Num a => a -> a
abs Either Size (Range Natural)
x
  SgnF Either Size (Range Natural)
x -> (forall a. Num a => a -> a)
-> Either Size (Range Natural) -> Either Size (Range Natural)
unOp forall a. Num a => a -> a
signum Either Size (Range Natural)
x
  ApF Text
_ Natural -> Natural
f (Right Range Natural
x) -> forall a b. b -> Either a b
Right (Range {lo :: Natural
lo = Natural -> Natural
f (forall b. Range b -> b
lo Range Natural
x), hi :: Natural
hi = Natural -> Natural
f (forall b. Range b -> b
hi Range Natural
x)})
  ApF Text
n Natural -> Natural
f (Left Size
x) -> forall a b. a -> Either a b
Left (Text -> (Natural -> Natural) -> Size -> Size
apMono Text
n Natural -> Natural
f Size
x)
  where
    binOp ::
      (forall a. Num a => a -> a -> a) ->
      Either Size (Range Natural) ->
      Either Size (Range Natural) ->
      Either Size (Range Natural)
    binOp :: (forall a. Num a => a -> a -> a)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
-> Either Size (Range Natural)
binOp forall a. Num a => a -> a -> a
op (Right Range Natural
x) (Right Range Natural
y) = forall a b. b -> Either a b
Right (forall a. Num a => a -> a -> a
op Range Natural
x Range Natural
y)
    binOp forall a. Num a => a -> a -> a
op Either Size (Range Natural)
x Either Size (Range Natural)
y = forall a b. a -> Either a b
Left (forall a. Num a => a -> a -> a
op (Either Size (Range Natural) -> Size
toSize Either Size (Range Natural)
x) (Either Size (Range Natural) -> Size
toSize Either Size (Range Natural)
y))

    unOp ::
      (forall a. Num a => a -> a) ->
      Either Size (Range Natural) ->
      Either Size (Range Natural)
    unOp :: (forall a. Num a => a -> a)
-> Either Size (Range Natural) -> Either Size (Range Natural)
unOp forall a. Num a => a -> a
f = \case
      Right Range Natural
x -> forall a b. b -> Either a b
Right (forall a. Num a => a -> a
f Range Natural
x)
      Left Size
x -> forall a b. a -> Either a b
Left (forall a. Num a => a -> a
f Size
x)

    toSize :: Either Size (Range Natural) -> Size
    toSize :: Either Size (Range Natural) -> Size
toSize = \case
      Left Size
x -> Size
x
      Right Range Natural
r ->
        if forall b. Range b -> b
lo Range Natural
r forall a. Eq a => a -> a -> Bool
== forall b. Range b -> b
hi Range Natural
r
          then forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall b. Range b -> b
lo Range Natural
r)
          else
            [Case Size] -> Size
szCases
              [forall t. Text -> t -> Case t
Case Text
"lo" (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
lo Range Natural
r), forall t. Text -> t -> Case t
Case Text
"hi" (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall b. Range b -> b
hi Range Natural
r)]

-- | Force any thunks in the given @Size@ expression.
--
-- > ghci> putStrLn $ pretty $ szForce $ szLazy (Proxy @TxAux)
-- > (0 + { TxAux=(2 + ((0 + (_ :: Tx)) + (_ :: Vector TxInWitness))) })
szForce :: Size -> Size
szForce :: Size -> Size
szForce = forall t a. Recursive t => (Base t a -> a) -> t -> a
cata forall a b. (a -> b) -> a -> b
$ \case
  AddF Size
x Size
y -> Size
x forall a. Num a => a -> a -> a
+ Size
y
  MulF Size
x Size
y -> Size
x forall a. Num a => a -> a -> a
* Size
y
  SubF Size
x Size
y -> Size
x forall a. Num a => a -> a -> a
- Size
y
  NegF Size
x -> forall a. Num a => a -> a
negate Size
x
  AbsF Size
x -> forall a. Num a => a -> a
abs Size
x
  SgnF Size
x -> forall a. Num a => a -> a
signum Size
x
  CasesF [Case Size]
xs -> forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix forall a b. (a -> b) -> a -> b
$ forall t. [Case t] -> SizeF t
CasesF [Case Size]
xs
  ValueF Natural
x -> forall (f :: Type -> Type). f (Fix f) -> Fix f
Fix (forall t. Natural -> SizeF t
ValueF Natural
x)
  ApF Text
n Natural -> Natural
f Size
x -> Text -> (Natural -> Natural) -> Size -> Size
apMono Text
n Natural -> Natural
f Size
x
  TodoF forall t. EncCBOR t => Proxy t -> Size
f Proxy a
x -> forall t. EncCBOR t => Proxy t -> Size
f Proxy a
x

szBounds :: EncCBOR a => a -> Either Size (Range Natural)
szBounds :: forall a. EncCBOR a => a -> Either Size (Range Natural)
szBounds = Size -> Either Size (Range Natural)
szSimplify forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall t. EncCBOR t => Proxy t -> Size
szGreedy forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (f :: Type -> Type) a. Applicative f => a -> f a
pure

-- | Compute encoded size of an integer
withWordSize :: (Integral s, Integral a) => s -> a
withWordSize :: forall s a. (Integral s, Integral a) => s -> a
withWordSize s
x =
  let s :: Integer
s = forall a b. (Integral a, Num b) => a -> b
fromIntegral s
x :: Integer
   in if
        | Integer
s forall a. Ord a => a -> a -> Bool
<= Integer
0x17 Bool -> Bool -> Bool
&& Integer
s forall a. Ord a => a -> a -> Bool
>= (-Integer
0x18) -> a
1
        | Integer
s forall a. Ord a => a -> a -> Bool
<= Integer
0xff Bool -> Bool -> Bool
&& Integer
s forall a. Ord a => a -> a -> Bool
>= (-Integer
0x100) -> a
2
        | Integer
s forall a. Ord a => a -> a -> Bool
<= Integer
0xffff Bool -> Bool -> Bool
&& Integer
s forall a. Ord a => a -> a -> Bool
>= (-Integer
0x10000) -> a
3
        | Integer
s forall a. Ord a => a -> a -> Bool
<= Integer
0xffffffff Bool -> Bool -> Bool
&& Integer
s forall a. Ord a => a -> a -> Bool
>= (-Integer
0x100000000) -> a
5
        | Bool
otherwise -> a
9

--------------------------------------------------------------------------------
-- Primitive types
--------------------------------------------------------------------------------

instance EncCBOR () where
  encCBOR :: () -> Encoding
encCBOR = forall a b. a -> b -> a
const Encoding
encodeNull
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy () -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ Proxy ()
_ = Size
1

instance EncCBOR Bool where
  encCBOR :: Bool -> Encoding
encCBOR = Bool -> Encoding
encodeBool
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Bool -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ Proxy Bool
_ = Size
1

--------------------------------------------------------------------------------
-- Numeric data
--------------------------------------------------------------------------------

instance EncCBOR Integer where
  encCBOR :: Integer -> Encoding
encCBOR = Integer -> Encoding
encodeInteger

encodedSizeRange :: forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange :: forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange Proxy a
_ =
  [Case Size] -> Size
szCases
    [ Text -> a -> Case Size
mkCase Text
"minBound" a
0 -- min, in absolute value
    , Text -> a -> Case Size
mkCase Text
"maxBound" forall a. Bounded a => a
maxBound
    ]
  where
    mkCase :: Text -> a -> Case Size
    mkCase :: Text -> a -> Case Size
mkCase Text
n = forall t. Text -> t -> Case t
Case Text
n forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Num a => Integer -> a
fromInteger forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall s a. (Integral s, Integral a) => s -> a
withWordSize

instance EncCBOR Word where
  encCBOR :: Word -> Encoding
encCBOR = Word -> Encoding
encodeWord
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Word -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Word8 where
  encCBOR :: Word8 -> Encoding
encCBOR = Word8 -> Encoding
encodeWord8
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Word8 -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Word16 where
  encCBOR :: Word16 -> Encoding
encCBOR = Word16 -> Encoding
encodeWord16
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Word16 -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Word32 where
  encCBOR :: Word32 -> Encoding
encCBOR = Word32 -> Encoding
encodeWord32
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Word32 -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Word64 where
  encCBOR :: Word64 -> Encoding
encCBOR = Word64 -> Encoding
encodeWord64
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Word64 -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Int where
  encCBOR :: Int -> Encoding
encCBOR = Int -> Encoding
encodeInt
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Int -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Int8 where
  encCBOR :: Int8 -> Encoding
encCBOR = Int8 -> Encoding
encodeInt8
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Int8 -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Int16 where
  encCBOR :: Int16 -> Encoding
encCBOR = Int16 -> Encoding
encodeInt16
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Int16 -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Int32 where
  encCBOR :: Int32 -> Encoding
encCBOR = Int32 -> Encoding
encodeInt32
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Int32 -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Int64 where
  encCBOR :: Int64 -> Encoding
encCBOR = Int64 -> Encoding
encodeInt64
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Int64 -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall a. (Integral a, Bounded a) => Proxy a -> Size
encodedSizeRange

instance EncCBOR Float where
  encCBOR :: Float -> Encoding
encCBOR = Float -> Encoding
encodeFloat
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Float -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ Proxy Float
_ = Size
1 forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall a. Storable a => a -> Int
sizeOf (Float
0 :: Float))

instance EncCBOR Double where
  encCBOR :: Double -> Encoding
encCBOR = Double -> Encoding
encodeDouble
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Double -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ Proxy Double
_ = Size
1 forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall a. Storable a => a -> Int
sizeOf (Float
0 :: Float))

instance EncCBOR a => EncCBOR (Ratio a) where
  encCBOR :: Ratio a -> Encoding
encCBOR = forall t. (t -> Encoding) -> Ratio t -> Encoding
encodeRatio forall a. EncCBOR a => a -> Encoding
encCBOR
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy (Ratio a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (Ratio a)
_ = Size
1 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a) forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)

deriving newtype instance Typeable p => EncCBOR (Fixed p)

instance EncCBOR Natural where
  encCBOR :: Natural -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Integral a => a -> Integer
toInteger

instance EncCBOR Void where
  encCBOR :: Void -> Encoding
encCBOR = forall a. Void -> a
absurd

instance EncCBOR IPv4 where
  encCBOR :: IPv4 -> Encoding
encCBOR = IPv4 -> Encoding
encodeIPv4

instance EncCBOR IPv6 where
  encCBOR :: IPv6 -> Encoding
encCBOR = IPv6 -> Encoding
encodeIPv6

--------------------------------------------------------------------------------
-- CBOR
--------------------------------------------------------------------------------

instance EncCBOR Term where
  encCBOR :: Term -> Encoding
encCBOR = Term -> Encoding
encodeTerm

instance EncCBOR Encoding where
  encCBOR :: Encoding -> Encoding
encCBOR = forall a. a -> a
id

instance EncCBOR C.Encoding where
  encCBOR :: Encoding -> Encoding
encCBOR = Encoding -> Encoding
fromPlainEncoding

instance EncCBOR (Tokens -> Tokens) where
  encCBOR :: (Tokens -> Tokens) -> Encoding
encCBOR Tokens -> Tokens
t = Encoding -> Encoding
fromPlainEncoding ((Tokens -> Tokens) -> Encoding
C.Encoding Tokens -> Tokens
t)

--------------------------------------------------------------------------------
-- Tagged
--------------------------------------------------------------------------------

instance (Typeable s, EncCBOR a) => EncCBOR (Tagged s a) where
  encCBOR :: Tagged s a -> Encoding
encCBOR (Tagged a
a) = forall a. EncCBOR a => a -> Encoding
encCBOR a
a

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (Tagged s a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (Tagged s a)
_ = forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)

--------------------------------------------------------------------------------
-- Containers
--------------------------------------------------------------------------------

instance (EncCBOR a, EncCBOR b) => EncCBOR (a, b) where
  encCBOR :: (a, b) -> Encoding
encCBOR (a
a, b
b) = Word -> Encoding
encodeListLen Word
2 forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR a
a forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR b
b

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy (a, b) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (a, b)
_ = Size
1 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a) forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b)

instance (EncCBOR a, EncCBOR b, EncCBOR c) => EncCBOR (a, b, c) where
  encCBOR :: (a, b, c) -> Encoding
encCBOR (a
a, b
b, c
c) = Word -> Encoding
encodeListLen Word
3 forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR a
a forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR b
b forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR c
c

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy (a, b, c) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (a, b, c)
_ =
    Size
1 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a) forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b) forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @c)

instance (EncCBOR a, EncCBOR b, EncCBOR c, EncCBOR d) => EncCBOR (a, b, c, d) where
  encCBOR :: (a, b, c, d) -> Encoding
encCBOR (a
a, b
b, c
c, d
d) =
    Word -> Encoding
encodeListLen Word
4 forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR a
a forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR b
b forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR c
c forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR d
d

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (a, b, c, d) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (a, b, c, d)
_ =
    Size
1 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a) forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b) forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @c) forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @d)

instance
  (EncCBOR a, EncCBOR b, EncCBOR c, EncCBOR d, EncCBOR e) =>
  EncCBOR (a, b, c, d, e)
  where
  encCBOR :: (a, b, c, d, e) -> Encoding
encCBOR (a
a, b
b, c
c, d
d, e
e) =
    Word -> Encoding
encodeListLen Word
5
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR a
a
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR b
b
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR c
c
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR d
d
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR e
e

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (a, b, c, d, e) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (a, b, c, d, e)
_ =
    Size
1
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @c)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @d)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @e)

instance
  (EncCBOR a, EncCBOR b, EncCBOR c, EncCBOR d, EncCBOR e, EncCBOR f) =>
  EncCBOR (a, b, c, d, e, f)
  where
  encCBOR :: (a, b, c, d, e, f) -> Encoding
encCBOR (a
a, b
b, c
c, d
d, e
e, f
f) =
    Word -> Encoding
encodeListLen Word
6
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR a
a
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR b
b
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR c
c
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR d
d
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR e
e
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR f
f

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (a, b, c, d, e, f) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (a, b, c, d, e, f)
_ =
    Size
1
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @c)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @d)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @e)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @f)

instance
  (EncCBOR a, EncCBOR b, EncCBOR c, EncCBOR d, EncCBOR e, EncCBOR f, EncCBOR g) =>
  EncCBOR (a, b, c, d, e, f, g)
  where
  encCBOR :: (a, b, c, d, e, f, g) -> Encoding
encCBOR (a
a, b
b, c
c, d
d, e
e, f
f, g
g) =
    Word -> Encoding
encodeListLen Word
7
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR a
a
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR b
b
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR c
c
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR d
d
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR e
e
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR f
f
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR g
g

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (a, b, c, d, e, f, g) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (a, b, c, d, e, f, g)
_ =
    Size
1
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @c)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @d)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @e)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @f)
      forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @g)

instance EncCBOR BS.ByteString where
  encCBOR :: ByteString -> Encoding
encCBOR = ByteString -> Encoding
encodeBytes
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy ByteString -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy ByteString
_ =
    let len :: Size
len = forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf BS.ByteString))
     in Text -> (Natural -> Natural) -> Size -> Size
apMono Text
"withWordSize@Int" (forall s a. (Integral s, Integral a) => s -> a
withWordSize @Int forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) Size
len forall a. Num a => a -> a -> a
+ Size
len

instance EncCBOR Text.Text where
  encCBOR :: Text -> Encoding
encCBOR = Text -> Encoding
encodeString
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Text -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy Text
_ =
    let bsLength :: Size
bsLength =
          forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf Text))
            forall a. Num a => a -> a -> a
* [Case Size] -> Size
szCases [forall t. Text -> t -> Case t
Case Text
"minChar" Size
1, forall t. Text -> t -> Case t
Case Text
"maxChar" Size
4]
     in Size
bsLength forall a. Num a => a -> a -> a
+ Text -> (Natural -> Natural) -> Size -> Size
apMono Text
"withWordSize" forall s a. (Integral s, Integral a) => s -> a
withWordSize Size
bsLength

instance EncCBOR ByteArray where
  encCBOR :: ByteArray -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. ByteArray -> ByteArray
unBA
  {-# INLINE encCBOR #-}

instance EncCBOR Prim.ByteArray where
  encCBOR :: ByteArray -> Encoding
encCBOR = SlicedByteArray -> Encoding
encodeByteArray forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. ByteArray -> SlicedByteArray
fromByteArray
  {-# INLINE encCBOR #-}

instance EncCBOR SlicedByteArray where
  encCBOR :: SlicedByteArray -> Encoding
encCBOR = SlicedByteArray -> Encoding
encodeByteArray
  {-# INLINE encCBOR #-}

instance EncCBOR ShortByteString where
  encCBOR :: ShortByteString -> Encoding
encCBOR sbs :: ShortByteString
sbs@(SBS ByteArray#
ba) =
    SlicedByteArray -> Encoding
encodeByteArray forall a b. (a -> b) -> a -> b
$ ByteArray -> Int -> Int -> SlicedByteArray
SBA (ByteArray# -> ByteArray
Prim.ByteArray ByteArray#
ba) Int
0 (ShortByteString -> Int
SBS.length ShortByteString
sbs)

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy ShortByteString -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy ShortByteString
_ =
    let len :: Size
len = forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf ShortByteString))
     in Text -> (Natural -> Natural) -> Size -> Size
apMono Text
"withWordSize@Int" (forall s a. (Integral s, Integral a) => s -> a
withWordSize @Int forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) Size
len forall a. Num a => a -> a -> a
+ Size
len

instance EncCBOR BS.Lazy.ByteString where
  encCBOR :: ByteString -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. ByteString -> ByteString
BS.Lazy.toStrict
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy ByteString -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy ByteString
_ =
    let len :: Size
len = forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf BS.Lazy.ByteString))
     in Text -> (Natural -> Natural) -> Size -> Size
apMono Text
"withWordSize@Int" (forall s a. (Integral s, Integral a) => s -> a
withWordSize @Int forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral) Size
len forall a. Num a => a -> a -> a
+ Size
len

instance EncCBOR a => EncCBOR [a] where
  encCBOR :: [a] -> Encoding
encCBOR = forall a. (a -> Encoding) -> [a] -> Encoding
encodeList forall a. EncCBOR a => a -> Encoding
encCBOR
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy [a]
_ = forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy [a] -> Size
encodedListSizeExpr forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @[a])

instance (EncCBOR a, EncCBOR b) => EncCBOR (Either a b) where
  encCBOR :: Either a b -> Encoding
encCBOR (Left a
x) = Word -> Encoding
encodeListLen Word
2 forall a. Semigroup a => a -> a -> a
<> Word -> Encoding
encodeWord Word
0 forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR a
x
  encCBOR (Right b
x) = Word -> Encoding
encodeListLen Word
2 forall a. Semigroup a => a -> a -> a
<> Word -> Encoding
encodeWord Word
1 forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR b
x

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (Either a b) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (Either a b)
_ =
    [Case Size] -> Size
szCases
      [forall t. Text -> t -> Case t
Case Text
"Left" (Size
2 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)), forall t. Text -> t -> Case t
Case Text
"Right" (Size
2 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @b))]

instance EncCBOR a => EncCBOR (NonEmpty a) where
  encCBOR :: NonEmpty a -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (t :: Type -> Type) a. Foldable t => t a -> [a]
toList
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (NonEmpty a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (NonEmpty a)
_ = forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @[a]) -- MN TODO make 0 count impossible

instance EncCBOR a => EncCBOR (Maybe a) where
  encCBOR :: Maybe a -> Encoding
encCBOR = forall a. (a -> Encoding) -> Maybe a -> Encoding
encodeMaybe forall a. EncCBOR a => a -> Encoding
encCBOR

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy (Maybe a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (Maybe a)
_ =
    [Case Size] -> Size
szCases [forall t. Text -> t -> Case t
Case Text
"Nothing" Size
1, forall t. Text -> t -> Case t
Case Text
"Just" (Size
1 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a))]

instance EncCBOR a => EncCBOR (SMaybe.StrictMaybe a) where
  encCBOR :: StrictMaybe a -> Encoding
encCBOR = forall a. (a -> Encoding) -> StrictMaybe a -> Encoding
encodeStrictMaybe forall a. EncCBOR a => a -> Encoding
encCBOR

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (StrictMaybe a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (StrictMaybe a)
_ =
    [Case Size] -> Size
szCases [forall t. Text -> t -> Case t
Case Text
"SNothing" Size
1, forall t. Text -> t -> Case t
Case Text
"SJust" (Size
1 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a))]

instance (Ord k, EncCBOR k, EncCBOR v) => EncCBOR (Map.Map k v) where
  encCBOR :: Map k v -> Encoding
encCBOR = forall k v.
(k -> Encoding) -> (v -> Encoding) -> Map k v -> Encoding
encodeMap forall a. EncCBOR a => a -> Encoding
encCBOR forall a. EncCBOR a => a -> Encoding
encCBOR

instance (Ord a, EncCBOR a) => EncCBOR (Set.Set a) where
  encCBOR :: Set a -> Encoding
encCBOR = forall a. (a -> Encoding) -> Set a -> Encoding
encodeSet forall a. EncCBOR a => a -> Encoding
encCBOR

instance EncCBOR a => EncCBOR (Seq.Seq a) where
  encCBOR :: Seq a -> Encoding
encCBOR = forall a. (a -> Encoding) -> Seq a -> Encoding
encodeSeq forall a. EncCBOR a => a -> Encoding
encCBOR

instance EncCBOR a => EncCBOR (SSeq.StrictSeq a) where
  encCBOR :: StrictSeq a -> Encoding
encCBOR = forall a. (a -> Encoding) -> StrictSeq a -> Encoding
encodeStrictSeq forall a. EncCBOR a => a -> Encoding
encCBOR

instance
  (Ord k, EncCBOR k, EncCBOR v, VMap.Vector kv k, VMap.Vector vv v, Typeable kv, Typeable vv) =>
  EncCBOR (VMap.VMap kv vv k v)
  where
  encCBOR :: VMap kv vv k v -> Encoding
encCBOR = forall (kv :: Type -> Type) k (vv :: Type -> Type) v.
(Vector kv k, Vector vv v) =>
(k -> Encoding) -> (v -> Encoding) -> VMap kv vv k v -> Encoding
encodeVMap forall a. EncCBOR a => a -> Encoding
encCBOR forall a. EncCBOR a => a -> Encoding
encCBOR

instance EncCBOR a => EncCBOR (V.Vector a) where
  encCBOR :: Vector a -> Encoding
encCBOR = forall (v :: Type -> Type) a.
Vector v a =>
(a -> Encoding) -> v a -> Encoding
encodeVector forall a. EncCBOR a => a -> Encoding
encCBOR
  {-# INLINE encCBOR #-}
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (Vector a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (Vector a)
_ =
    Size
2 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf (V.Vector a))) forall a. Num a => a -> a -> a
* forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)

instance (EncCBOR a, VP.Prim a) => EncCBOR (VP.Vector a) where
  encCBOR :: Vector a -> Encoding
encCBOR = forall (v :: Type -> Type) a.
Vector v a =>
(a -> Encoding) -> v a -> Encoding
encodeVector forall a. EncCBOR a => a -> Encoding
encCBOR
  {-# INLINE encCBOR #-}
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (Vector a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (Vector a)
_ =
    Size
2 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf (VP.Vector a))) forall a. Num a => a -> a -> a
* forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)

instance (EncCBOR a, VS.Storable a) => EncCBOR (VS.Vector a) where
  encCBOR :: Vector a -> Encoding
encCBOR = forall (v :: Type -> Type) a.
Vector v a =>
(a -> Encoding) -> v a -> Encoding
encodeVector forall a. EncCBOR a => a -> Encoding
encCBOR
  {-# INLINE encCBOR #-}
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (Vector a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (Vector a)
_ =
    Size
2 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf (VS.Vector a))) forall a. Num a => a -> a -> a
* forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)

instance (EncCBOR a, VU.Unbox a) => EncCBOR (VU.Vector a) where
  encCBOR :: Vector a -> Encoding
encCBOR = forall (v :: Type -> Type) a.
Vector v a =>
(a -> Encoding) -> v a -> Encoding
encodeVector forall a. EncCBOR a => a -> Encoding
encCBOR
  {-# INLINE encCBOR #-}
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (Vector a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy (Vector a)
_ =
    Size
2 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @(LengthOf (VU.Vector a))) forall a. Num a => a -> a -> a
* forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy @a)

--------------------------------------------------------------------------------
-- Time
--------------------------------------------------------------------------------

instance EncCBOR UTCTime where
  encCBOR :: UTCTime -> Encoding
encCBOR = UTCTime -> Encoding
encodeUTCTime

--------------------------------------------------------------------------------
-- Crypto
--------------------------------------------------------------------------------

-- | 'Size' expression for 'VerKeyDSIGN' which is using 'sizeVerKeyDSIGN'
-- encoded as 'Size'.
encodedVerKeyDSIGNSizeExpr :: forall v. DSIGNAlgorithm v => Proxy (VerKeyDSIGN v) -> Size
encodedVerKeyDSIGNSizeExpr :: forall v. DSIGNAlgorithm v => Proxy (VerKeyDSIGN v) -> Size
encodedVerKeyDSIGNSizeExpr Proxy (VerKeyDSIGN v)
_proxy =
  -- 'encodeBytes' envelope
  forall a b. (Integral a, Num b) => a -> b
fromIntegral ((forall s a. (Integral s, Integral a) => s -> a
withWordSize :: Word -> Integer) (forall v (proxy :: Type -> Type).
DSIGNAlgorithm v =>
proxy v -> Word
sizeVerKeyDSIGN (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)))
    -- payload
    forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type).
DSIGNAlgorithm v =>
proxy v -> Word
sizeVerKeyDSIGN (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))

-- | 'Size' expression for 'SignKeyDSIGN' which is using 'sizeSignKeyDSIGN'
-- encoded as 'Size'.
encodedSignKeyDSIGNSizeExpr :: forall v. DSIGNAlgorithm v => Proxy (SignKeyDSIGN v) -> Size
encodedSignKeyDSIGNSizeExpr :: forall v. DSIGNAlgorithm v => Proxy (SignKeyDSIGN v) -> Size
encodedSignKeyDSIGNSizeExpr Proxy (SignKeyDSIGN v)
_proxy =
  -- 'encodeBytes' envelope
  forall a b. (Integral a, Num b) => a -> b
fromIntegral ((forall s a. (Integral s, Integral a) => s -> a
withWordSize :: Word -> Integer) (forall v (proxy :: Type -> Type).
DSIGNAlgorithm v =>
proxy v -> Word
sizeSignKeyDSIGN (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)))
    -- payload
    forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type).
DSIGNAlgorithm v =>
proxy v -> Word
sizeSignKeyDSIGN (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))

-- | 'Size' expression for 'SigDSIGN' which is using 'sizeSigDSIGN' encoded as
-- 'Size'.
encodedSigDSIGNSizeExpr :: forall v. DSIGNAlgorithm v => Proxy (SigDSIGN v) -> Size
encodedSigDSIGNSizeExpr :: forall v. DSIGNAlgorithm v => Proxy (SigDSIGN v) -> Size
encodedSigDSIGNSizeExpr Proxy (SigDSIGN v)
_proxy =
  -- 'encodeBytes' envelope
  forall a b. (Integral a, Num b) => a -> b
fromIntegral ((forall s a. (Integral s, Integral a) => s -> a
withWordSize :: Word -> Integer) (forall v (proxy :: Type -> Type).
DSIGNAlgorithm v =>
proxy v -> Word
sizeSigDSIGN (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)))
    -- payload
    forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type).
DSIGNAlgorithm v =>
proxy v -> Word
sizeSigDSIGN (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))

-- | 'Size' expression for 'SignedDSIGN' which uses `encodedSigDSIGNSizeExpr`
encodedSignedDSIGNSizeExpr :: forall v a. DSIGNAlgorithm v => Proxy (SignedDSIGN v a) -> Size
encodedSignedDSIGNSizeExpr :: forall v a. DSIGNAlgorithm v => Proxy (SignedDSIGN v a) -> Size
encodedSignedDSIGNSizeExpr Proxy (SignedDSIGN v a)
_proxy = forall v. DSIGNAlgorithm v => Proxy (SigDSIGN v) -> Size
encodedSigDSIGNSizeExpr (forall {k} (t :: k). Proxy t
Proxy :: Proxy (SigDSIGN v))

--------------------------------------------------------------------------------
-- DSIGN
--------------------------------------------------------------------------------

instance DSIGNAlgorithm v => EncCBOR (VerKeyDSIGN v) where
  encCBOR :: VerKeyDSIGN v -> Encoding
encCBOR = forall v. DSIGNAlgorithm v => VerKeyDSIGN v -> Encoding
encodeVerKeyDSIGN
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (VerKeyDSIGN v) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall v. DSIGNAlgorithm v => Proxy (VerKeyDSIGN v) -> Size
encodedVerKeyDSIGNSizeExpr

instance DSIGNAlgorithm v => EncCBOR (SignKeyDSIGN v) where
  encCBOR :: SignKeyDSIGN v -> Encoding
encCBOR = forall v. DSIGNAlgorithm v => SignKeyDSIGN v -> Encoding
encodeSignKeyDSIGN
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (SignKeyDSIGN v) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall v. DSIGNAlgorithm v => Proxy (SignKeyDSIGN v) -> Size
encodedSignKeyDSIGNSizeExpr

instance DSIGNAlgorithm v => EncCBOR (SigDSIGN v) where
  encCBOR :: SigDSIGN v -> Encoding
encCBOR = forall v. DSIGNAlgorithm v => SigDSIGN v -> Encoding
encodeSigDSIGN
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (SigDSIGN v) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall v. DSIGNAlgorithm v => Proxy (SigDSIGN v) -> Size
encodedSigDSIGNSizeExpr

instance (DSIGNAlgorithm v, Typeable a) => EncCBOR (SignedDSIGN v a) where
  encCBOR :: SignedDSIGN v a -> Encoding
encCBOR = forall v a. DSIGNAlgorithm v => SignedDSIGN v a -> Encoding
encodeSignedDSIGN
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (SignedDSIGN v a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ = forall v a. DSIGNAlgorithm v => Proxy (SignedDSIGN v a) -> Size
encodedSignedDSIGNSizeExpr

--------------------------------------------------------------------------------
-- Hash
--------------------------------------------------------------------------------

instance (HashAlgorithm h, Typeable a) => EncCBOR (Hash h a) where
  encCBOR :: Hash h a -> Encoding
encCBOR (UnsafeHash ShortByteString
h) = forall a. EncCBOR a => a -> Encoding
encCBOR ShortByteString
h

  -- \| 'Size' expression for @Hash h a@, which is expressed using the 'EncCBOR'
  -- instance for 'ByteString' (as is the above 'encCBOR' method).  'Size'
  -- computation of length of the bytestring is passed as the first argument to
  -- 'encodedSizeExpr'.  The 'ByteString' instance will use it to calculate
  -- @'size' ('Proxy' @('LengthOf' 'ByteString'))@.
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (Hash h a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size Proxy (Hash h a)
proxy =
    forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr (forall a b. a -> b -> a
const Size
hashSize) (forall h a. Hash h a -> ByteString
hashToBytes forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Proxy (Hash h a)
proxy)
    where
      hashSize :: Size
      hashSize :: Size
hashSize = forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall h (proxy :: Type -> Type).
HashAlgorithm h =>
proxy h -> Word
sizeHash (forall {k} (t :: k). Proxy t
Proxy :: Proxy h))

--------------------------------------------------------------------------------
-- KES
--------------------------------------------------------------------------------

-- | 'Size' expression for 'VerKeyKES' which is using 'sizeVerKeyKES' encoded
-- as 'Size'.
encodedVerKeyKESSizeExpr :: forall v. KESAlgorithm v => Proxy (VerKeyKES v) -> Size
encodedVerKeyKESSizeExpr :: forall v. KESAlgorithm v => Proxy (VerKeyKES v) -> Size
encodedVerKeyKESSizeExpr Proxy (VerKeyKES v)
_proxy =
  -- 'encodeBytes' envelope
  forall a b. (Integral a, Num b) => a -> b
fromIntegral ((forall s a. (Integral s, Integral a) => s -> a
withWordSize :: Word -> Integer) (forall v (proxy :: Type -> Type). KESAlgorithm v => proxy v -> Word
sizeVerKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)))
    -- payload
    forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type). KESAlgorithm v => proxy v -> Word
sizeVerKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))

-- | 'Size' expression for 'SignKeyKES' which is using 'sizeSignKeyKES' encoded
-- as 'Size'.
encodedSignKeyKESSizeExpr :: forall v. KESAlgorithm v => Proxy (SignKeyKES v) -> Size
encodedSignKeyKESSizeExpr :: forall v. KESAlgorithm v => Proxy (SignKeyKES v) -> Size
encodedSignKeyKESSizeExpr Proxy (SignKeyKES v)
_proxy =
  -- 'encodeBytes' envelope
  forall a b. (Integral a, Num b) => a -> b
fromIntegral ((forall s a. (Integral s, Integral a) => s -> a
withWordSize :: Word -> Integer) (forall v (proxy :: Type -> Type). KESAlgorithm v => proxy v -> Word
sizeSignKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)))
    -- payload
    forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type). KESAlgorithm v => proxy v -> Word
sizeSignKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))

-- | 'Size' expression for 'SigKES' which is using 'sizeSigKES' encoded as
-- 'Size'.
encodedSigKESSizeExpr :: forall v. KESAlgorithm v => Proxy (SigKES v) -> Size
encodedSigKESSizeExpr :: forall v. KESAlgorithm v => Proxy (SigKES v) -> Size
encodedSigKESSizeExpr Proxy (SigKES v)
_proxy =
  -- 'encodeBytes' envelope
  forall a b. (Integral a, Num b) => a -> b
fromIntegral ((forall s a. (Integral s, Integral a) => s -> a
withWordSize :: Word -> Integer) (forall v (proxy :: Type -> Type). KESAlgorithm v => proxy v -> Word
sizeSigKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)))
    -- payload
    forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type). KESAlgorithm v => proxy v -> Word
sizeSigKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))

instance KESAlgorithm k => EncCBOR (VerKeyKES k) where
  encCBOR :: VerKeyKES k -> Encoding
encCBOR = forall k. KESAlgorithm k => VerKeyKES k -> Encoding
encodeVerKeyKES
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (VerKeyKES k) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size = forall v. KESAlgorithm v => Proxy (VerKeyKES v) -> Size
encodedVerKeyKESSizeExpr

instance KESAlgorithm k => EncCBOR (SigKES k) where
  encCBOR :: SigKES k -> Encoding
encCBOR = forall k. KESAlgorithm k => SigKES k -> Encoding
encodeSigKES
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (SigKES k) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size = forall v. KESAlgorithm v => Proxy (SigKES v) -> Size
encodedSigKESSizeExpr

--------------------------------------------------------------------------------
-- VRF
--------------------------------------------------------------------------------

-- | 'Size' expression for 'VerKeyVRF' which is using 'sizeVerKeyVRF' encoded as
-- 'Size'.
encodedVerKeyVRFSizeExpr :: forall v. VRFAlgorithm v => Proxy (VerKeyVRF v) -> Size
encodedVerKeyVRFSizeExpr :: forall v. VRFAlgorithm v => Proxy (VerKeyVRF v) -> Size
encodedVerKeyVRFSizeExpr Proxy (VerKeyVRF v)
_proxy =
  -- 'encodeBytes' envelope
  forall a b. (Integral a, Num b) => a -> b
fromIntegral ((forall s a. (Integral s, Integral a) => s -> a
withWordSize :: Word -> Integer) (forall v (proxy :: Type -> Type). VRFAlgorithm v => proxy v -> Word
sizeVerKeyVRF (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)))
    -- payload
    forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type). VRFAlgorithm v => proxy v -> Word
sizeVerKeyVRF (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))

-- | 'Size' expression for 'SignKeyVRF' which is using 'sizeSignKeyVRF' encoded
-- as 'Size'
encodedSignKeyVRFSizeExpr :: forall v. VRFAlgorithm v => Proxy (SignKeyVRF v) -> Size
encodedSignKeyVRFSizeExpr :: forall v. VRFAlgorithm v => Proxy (SignKeyVRF v) -> Size
encodedSignKeyVRFSizeExpr Proxy (SignKeyVRF v)
_proxy =
  -- 'encodeBytes' envelope
  forall a b. (Integral a, Num b) => a -> b
fromIntegral ((forall s a. (Integral s, Integral a) => s -> a
withWordSize :: Word -> Integer) (forall v (proxy :: Type -> Type). VRFAlgorithm v => proxy v -> Word
sizeSignKeyVRF (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)))
    -- payload
    forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type). VRFAlgorithm v => proxy v -> Word
sizeSignKeyVRF (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))

-- | 'Size' expression for 'CertVRF' which is using 'sizeCertVRF' encoded as
-- 'Size'.
encodedCertVRFSizeExpr :: forall v. VRFAlgorithm v => Proxy (CertVRF v) -> Size
encodedCertVRFSizeExpr :: forall v. VRFAlgorithm v => Proxy (CertVRF v) -> Size
encodedCertVRFSizeExpr Proxy (CertVRF v)
_proxy =
  -- 'encodeBytes' envelope
  forall a b. (Integral a, Num b) => a -> b
fromIntegral ((forall s a. (Integral s, Integral a) => s -> a
withWordSize :: Word -> Integer) (forall v (proxy :: Type -> Type). VRFAlgorithm v => proxy v -> Word
sizeCertVRF (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)))
    -- payload
    forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type). VRFAlgorithm v => proxy v -> Word
sizeCertVRF (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))

instance EncCBOR (VerKeyVRF SimpleVRF) where
  encCBOR :: VerKeyVRF SimpleVRF -> Encoding
encCBOR = forall v. VRFAlgorithm v => VerKeyVRF v -> Encoding
encodeVerKeyVRF
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (VerKeyVRF SimpleVRF) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size = forall v. VRFAlgorithm v => Proxy (VerKeyVRF v) -> Size
encodedVerKeyVRFSizeExpr

instance EncCBOR (SignKeyVRF SimpleVRF) where
  encCBOR :: SignKeyVRF SimpleVRF -> Encoding
encCBOR = forall v. VRFAlgorithm v => SignKeyVRF v -> Encoding
encodeSignKeyVRF
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (SignKeyVRF SimpleVRF) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size = forall v. VRFAlgorithm v => Proxy (SignKeyVRF v) -> Size
encodedSignKeyVRFSizeExpr

instance EncCBOR (CertVRF SimpleVRF) where
  encCBOR :: CertVRF SimpleVRF -> Encoding
encCBOR = forall v. VRFAlgorithm v => CertVRF v -> Encoding
encodeCertVRF
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (CertVRF SimpleVRF) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size = forall v. VRFAlgorithm v => Proxy (CertVRF v) -> Size
encodedCertVRFSizeExpr

instance EncCBOR (VerKeyVRF MockVRF) where
  encCBOR :: VerKeyVRF MockVRF -> Encoding
encCBOR = forall v. VRFAlgorithm v => VerKeyVRF v -> Encoding
encodeVerKeyVRF
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (VerKeyVRF MockVRF) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size = forall v. VRFAlgorithm v => Proxy (VerKeyVRF v) -> Size
encodedVerKeyVRFSizeExpr

instance EncCBOR (SignKeyVRF MockVRF) where
  encCBOR :: SignKeyVRF MockVRF -> Encoding
encCBOR = forall v. VRFAlgorithm v => SignKeyVRF v -> Encoding
encodeSignKeyVRF
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (SignKeyVRF MockVRF) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size = forall v. VRFAlgorithm v => Proxy (SignKeyVRF v) -> Size
encodedSignKeyVRFSizeExpr

instance EncCBOR (CertVRF MockVRF) where
  encCBOR :: CertVRF MockVRF -> Encoding
encCBOR = forall v. VRFAlgorithm v => CertVRF v -> Encoding
encodeCertVRF
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (CertVRF MockVRF) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size = forall v. VRFAlgorithm v => Proxy (CertVRF v) -> Size
encodedCertVRFSizeExpr

deriving instance Typeable v => EncCBOR (OutputVRF v)

instance (VRFAlgorithm v, Typeable a) => EncCBOR (CertifiedVRF v a) where
  encCBOR :: CertifiedVRF v a -> Encoding
encCBOR CertifiedVRF v a
cvrf =
    Word -> Encoding
encodeListLen Word
2
      forall a. Semigroup a => a -> a -> a
<> forall a. EncCBOR a => a -> Encoding
encCBOR (forall v a. CertifiedVRF v a -> OutputVRF v
certifiedOutput CertifiedVRF v a
cvrf)
      forall a. Semigroup a => a -> a -> a
<> forall v. VRFAlgorithm v => CertVRF v -> Encoding
encodeCertVRF (forall v a. CertifiedVRF v a -> CertVRF v
certifiedProof CertifiedVRF v a
cvrf)

  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size)
-> Proxy (CertifiedVRF v a) -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_size Proxy (CertifiedVRF v a)
proxy =
    Size
1
      forall a. Num a => a -> a -> a
+ Proxy (OutputVRF v) -> Size
certifiedOutputSize (forall v a. CertifiedVRF v a -> OutputVRF v
certifiedOutput forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Proxy (CertifiedVRF v a)
proxy)
      forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type). VRFAlgorithm v => proxy v -> Word
sizeCertVRF (forall {k} (t :: k). Proxy t
Proxy :: Proxy v))
    where
      certifiedOutputSize :: Proxy (OutputVRF v) -> Size
      certifiedOutputSize :: Proxy (OutputVRF v) -> Size
certifiedOutputSize Proxy (OutputVRF v)
_proxy =
        forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall v (proxy :: Type -> Type). VRFAlgorithm v => proxy v -> Word
sizeOutputVRF (forall {k} (t :: k). Proxy t
Proxy :: Proxy v)

instance EncCBOR Praos.Proof where
  encCBOR :: Proof -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Proof -> ByteString
Praos.proofBytes
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy Proof -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ Proxy Proof
_ =
    forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr (\Proxy t
_ -> forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
Praos.certSizeVRF) (forall {k} (t :: k). Proxy t
Proxy :: Proxy BS.ByteString)

instance EncCBOR Praos.SignKey where
  encCBOR :: SignKey -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. SignKey -> ByteString
Praos.skBytes
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy SignKey -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ Proxy SignKey
_ =
    forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr (\Proxy t
_ -> forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
Praos.signKeySizeVRF) (forall {k} (t :: k). Proxy t
Proxy :: Proxy BS.ByteString)

instance EncCBOR Praos.VerKey where
  encCBOR :: VerKey -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. VerKey -> ByteString
Praos.vkBytes
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy VerKey -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
_ Proxy VerKey
_ =
    forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr (\Proxy t
_ -> forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
Praos.verKeySizeVRF) (forall {k} (t :: k). Proxy t
Proxy :: Proxy BS.ByteString)

deriving instance EncCBOR (VerKeyVRF Praos.PraosVRF)

deriving instance EncCBOR (SignKeyVRF Praos.PraosVRF)

deriving instance EncCBOR (CertVRF Praos.PraosVRF)

--------------------------------------------------------------------------------
-- Slotting
--------------------------------------------------------------------------------

-- TODO: Remove usage of 'serialise' package
instance EncCBOR SlotNo where
  encCBOR :: SlotNo -> Encoding
encCBOR = Encoding -> Encoding
fromPlainEncoding forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Serialise a => a -> Encoding
Serialise.encode
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy SlotNo -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size = forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap SlotNo -> Word64
unSlotNo

instance (Serialise.Serialise t, Typeable t) => EncCBOR (WithOrigin t) where
  encCBOR :: WithOrigin t -> Encoding
encCBOR = Encoding -> Encoding
fromPlainEncoding forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Serialise a => a -> Encoding
Serialise.encode

deriving instance EncCBOR EpochNo

deriving instance EncCBOR EpochSize

deriving instance EncCBOR SystemStart

instance EncCBOR BlockNo where
  encCBOR :: BlockNo -> Encoding
encCBOR = Encoding -> Encoding
fromPlainEncoding forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Serialise a => a -> Encoding
Serialise.encode
  encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy BlockNo -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size = forall a.
EncCBOR a =>
(forall t. EncCBOR t => Proxy t -> Size) -> Proxy a -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap BlockNo -> Word64
unBlockNo

deriving instance EncCBOR EpochInterval

--------------------------------------------------------------------------------
-- Plutus
--------------------------------------------------------------------------------

instance EncCBOR PV1.Data where
  encCBOR :: Data -> Encoding
encCBOR = Encoding -> Encoding
fromPlainEncoding forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. Serialise a => a -> Encoding
Serialise.encode

instance EncCBOR PV1.ScriptContext where
  encCBOR :: ScriptContext -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. ToData a => a -> Data
PV3.toData

instance EncCBOR PV2.ScriptContext where
  encCBOR :: ScriptContext -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. ToData a => a -> Data
PV3.toData

instance EncCBOR PV3.ScriptContext where
  encCBOR :: ScriptContext -> Encoding
encCBOR = forall a. EncCBOR a => a -> Encoding
encCBOR forall {k} (cat :: k -> k -> Type) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a. ToData a => a -> Data
PV3.toData