{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Test.Cardano.Ledger.Shelley.Utils (
mkSeedFromWords,
mkCertifiedVRF,
epochFromSlotNo,
evolveKESUntil,
slotFromEpoch,
epochSize,
mkHash,
mkKeyPair,
mkKeyPair',
mkGenKey,
mkKESKeyPair,
mkVRFKeyPair,
runShelleyBase,
maxKESIterations,
slotsPerKESIteration,
testSTS,
maxLLSupply,
applySTSTest,
GenesisKeyPair,
getBlockNonce,
ChainProperty,
RawSeed (..),
Split (..),
module CoreUtils,
)
where
import Cardano.Crypto.DSIGN.Class (DSIGNAlgorithm (..))
import Cardano.Crypto.Hash (
Blake2b_256,
Hash,
HashAlgorithm,
hashToBytes,
)
import Cardano.Crypto.KES (
KESAlgorithm (..),
deriveVerKeyKES,
genKeyKES,
)
import Cardano.Crypto.Seed (Seed, mkSeedFromBytes)
import Cardano.Crypto.VRF (
CertifiedVRF,
SignKeyVRF,
VRFAlgorithm (..),
certifiedOutput,
deriveVerKeyVRF,
evalCertified,
genKeyVRF,
)
import qualified Cardano.Crypto.VRF as VRF
import Cardano.Ledger.BaseTypes (
Globals (..),
Nonce,
ShelleyBase,
epochInfoPure,
mkNonceFromOutputVRF,
)
import Cardano.Ledger.Binary (EncCBOR (..), hashWithEncoder, shelleyProtVer)
import Cardano.Ledger.Block (Block, bheader)
import Cardano.Ledger.Coin (Coin (..))
import Cardano.Ledger.Crypto (Crypto (DSIGN))
import Cardano.Ledger.Shelley.API (ApplyBlock, KeyRole (..), VKey (..))
import Cardano.Ledger.Shelley.Core
import Cardano.Ledger.Slot (EpochNo, EpochSize (..), SlotNo)
import Cardano.Protocol.TPraos.API (GetLedgerView)
import Cardano.Protocol.TPraos.BHeader (BHBody (..), BHeader, bhbody)
import Cardano.Slotting.EpochInfo (
epochInfoEpoch,
epochInfoFirst,
epochInfoSize,
)
import Control.Monad.Reader.Class (asks)
import Control.Monad.Trans.Reader (runReaderT)
import Control.State.Transition.Extended hiding (Assertion)
import Data.Coerce (Coercible, coerce)
import Data.Functor.Identity (runIdentity)
import Data.List.NonEmpty (NonEmpty)
import Data.Typeable (Proxy (Proxy))
import Data.Word (Word64)
import Test.Cardano.Ledger.Core.KeyPair (KeyPair, pattern KeyPair)
import Test.Cardano.Ledger.Core.Utils as CoreUtils
import Test.Cardano.Ledger.Shelley.Arbitrary (RawSeed (..))
import Test.Cardano.Ledger.Shelley.ConcreteCryptoTypes (Mock)
import Test.Cardano.Ledger.TreeDiff (ToExpr)
import Test.Cardano.Protocol.TPraos.Create (KESKeyPair (..), VRFKeyPair (..), evolveKESUntil)
import Test.Control.State.Transition.Trace (
applySTSTest,
checkTrace,
(.-),
(.->>),
)
import Test.Tasty.HUnit (
Assertion,
(@?=),
)
type ChainProperty era =
( Mock (EraCrypto era)
, ApplyBlock era
, GetLedgerView era
, EraTx era
)
class Split v where
vsplit :: v -> Integer -> ([v], Coin)
instance Split Coin where
vsplit :: Coin -> Integer -> ([Coin], Coin)
vsplit (Coin Integer
n) Integer
0 = ([], Integer -> Coin
Coin Integer
n)
vsplit (Coin Integer
n) Integer
m
| Integer
m forall a. Ord a => a -> a -> Bool
<= Integer
0 = forall a. HasCallStack => [Char] -> a
error [Char]
"must split coins into positive parts"
| Bool
otherwise = (forall a. Int -> [a] -> [a]
take (forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
m) (forall a. a -> [a]
repeat (Integer -> Coin
Coin (Integer
n forall a. Integral a => a -> a -> a
`div` Integer
m))), Integer -> Coin
Coin (Integer
n forall a. Integral a => a -> a -> a
`rem` Integer
m))
type GenesisKeyPair c = KeyPair 'Genesis c
instance EncCBOR RawSeed where
encCBOR :: RawSeed -> Encoding
encCBOR (RawSeed Word64
w1 Word64
w2 Word64
w3 Word64
w4 Word64
w5) = forall a. EncCBOR a => a -> Encoding
encCBOR (Word64
w1, Word64
w2, Word64
w3, Word64
w4, Word64
w5)
encodedSizeExpr :: (forall t. EncCBOR t => Proxy t -> Size) -> Proxy RawSeed -> Size
encodedSizeExpr forall t. EncCBOR t => Proxy t -> Size
size Proxy RawSeed
_ = Size
1 forall a. Num a => a -> a -> a
+ forall t. EncCBOR t => Proxy t -> Size
size (forall {k} (t :: k). Proxy t
Proxy :: Proxy Word64) forall a. Num a => a -> a -> a
* Size
5
mkSeedFromWords ::
RawSeed ->
Seed
mkSeedFromWords :: RawSeed -> Seed
mkSeedFromWords RawSeed
stuff =
ByteString -> Seed
mkSeedFromBytes forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall h a. Hash h a -> ByteString
hashToBytes forall a b. (a -> b) -> a -> b
$ forall h a.
HashAlgorithm h =>
Version -> (a -> Encoding) -> a -> Hash h a
hashWithEncoder @Blake2b_256 Version
shelleyProtVer forall a. EncCBOR a => a -> Encoding
encCBOR RawSeed
stuff
mkGenKey ::
DSIGNAlgorithm (DSIGN c) =>
RawSeed ->
(SignKeyDSIGN (DSIGN c), VKey kd c)
mkGenKey :: forall c (kd :: KeyRole).
DSIGNAlgorithm (DSIGN c) =>
RawSeed -> (SignKeyDSIGN (DSIGN c), VKey kd c)
mkGenKey RawSeed
seed =
let sk :: SignKeyDSIGN (DSIGN c)
sk = forall v. DSIGNAlgorithm v => Seed -> SignKeyDSIGN v
genKeyDSIGN forall a b. (a -> b) -> a -> b
$ RawSeed -> Seed
mkSeedFromWords RawSeed
seed
in (SignKeyDSIGN (DSIGN c)
sk, forall (kd :: KeyRole) c. VerKeyDSIGN (DSIGN c) -> VKey kd c
VKey forall a b. (a -> b) -> a -> b
$ forall v. DSIGNAlgorithm v => SignKeyDSIGN v -> VerKeyDSIGN v
deriveVerKeyDSIGN SignKeyDSIGN (DSIGN c)
sk)
mkKeyPair ::
forall c kd.
DSIGNAlgorithm (DSIGN c) =>
RawSeed ->
(SignKeyDSIGN (DSIGN c), VKey kd c)
mkKeyPair :: forall c (kd :: KeyRole).
DSIGNAlgorithm (DSIGN c) =>
RawSeed -> (SignKeyDSIGN (DSIGN c), VKey kd c)
mkKeyPair RawSeed
seed =
let sk :: SignKeyDSIGN (DSIGN c)
sk = forall v. DSIGNAlgorithm v => Seed -> SignKeyDSIGN v
genKeyDSIGN forall a b. (a -> b) -> a -> b
$ RawSeed -> Seed
mkSeedFromWords RawSeed
seed
in (SignKeyDSIGN (DSIGN c)
sk, forall (kd :: KeyRole) c. VerKeyDSIGN (DSIGN c) -> VKey kd c
VKey forall a b. (a -> b) -> a -> b
$ forall v. DSIGNAlgorithm v => SignKeyDSIGN v -> VerKeyDSIGN v
deriveVerKeyDSIGN SignKeyDSIGN (DSIGN c)
sk)
mkKeyPair' ::
DSIGNAlgorithm (DSIGN c) =>
RawSeed ->
KeyPair kd c
mkKeyPair' :: forall c (kd :: KeyRole).
DSIGNAlgorithm (DSIGN c) =>
RawSeed -> KeyPair kd c
mkKeyPair' RawSeed
seed = forall (kd :: KeyRole) c.
VKey kd c -> SignKeyDSIGN (DSIGN c) -> KeyPair kd c
KeyPair VKey kd c
vk SignKeyDSIGN (DSIGN c)
sk
where
(SignKeyDSIGN (DSIGN c)
sk, VKey kd c
vk) = forall c (kd :: KeyRole).
DSIGNAlgorithm (DSIGN c) =>
RawSeed -> (SignKeyDSIGN (DSIGN c), VKey kd c)
mkKeyPair RawSeed
seed
mkVRFKeyPair :: Crypto c => RawSeed -> VRFKeyPair c
mkVRFKeyPair :: forall c. Crypto c => RawSeed -> VRFKeyPair c
mkVRFKeyPair RawSeed
seed =
let sk :: SignKeyVRF (VRF c)
sk = forall v. VRFAlgorithm v => Seed -> SignKeyVRF v
genKeyVRF forall a b. (a -> b) -> a -> b
$ RawSeed -> Seed
mkSeedFromWords RawSeed
seed
in VRFKeyPair
{ vrfSignKey :: SignKeyVRF (VRF c)
vrfSignKey = SignKeyVRF (VRF c)
sk
, vrfVerKey :: VerKeyVRF c
vrfVerKey = forall v. VRFAlgorithm v => SignKeyVRF v -> VerKeyVRF v
deriveVerKeyVRF SignKeyVRF (VRF c)
sk
}
mkCertifiedVRF ::
( VRF.Signable v a
, VRFAlgorithm v
, ContextVRF v ~ ()
, Coercible b (CertifiedVRF v a)
) =>
a ->
SignKeyVRF v ->
b
mkCertifiedVRF :: forall v a b.
(Signable v a, VRFAlgorithm v, ContextVRF v ~ (),
Coercible b (CertifiedVRF v a)) =>
a -> SignKeyVRF v -> b
mkCertifiedVRF a
a SignKeyVRF v
sk =
coerce :: forall a b. Coercible a b => a -> b
coerce forall a b. (a -> b) -> a -> b
$ forall v a.
(VRFAlgorithm v, Signable v a) =>
ContextVRF v -> a -> SignKeyVRF v -> CertifiedVRF v a
evalCertified () a
a SignKeyVRF v
sk
mkKESKeyPair :: Crypto c => RawSeed -> KESKeyPair c
mkKESKeyPair :: forall c. Crypto c => RawSeed -> KESKeyPair c
mkKESKeyPair RawSeed
seed =
let sk :: SignKeyKES (KES c)
sk = forall v. KESAlgorithm v => Seed -> SignKeyKES v
genKeyKES forall a b. (a -> b) -> a -> b
$ RawSeed -> Seed
mkSeedFromWords RawSeed
seed
in KESKeyPair
{ kesSignKey :: SignKeyKES (KES c)
kesSignKey = SignKeyKES (KES c)
sk
, kesVerKey :: VerKeyKES c
kesVerKey = forall v. KESAlgorithm v => SignKeyKES v -> VerKeyKES v
deriveVerKeyKES SignKeyKES (KES c)
sk
}
runShelleyBase :: ShelleyBase a -> a
runShelleyBase :: forall a. ShelleyBase a -> a
runShelleyBase ShelleyBase a
act = forall a. Identity a -> a
runIdentity forall a b. (a -> b) -> a -> b
$ forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT ShelleyBase a
act Globals
testGlobals
epochFromSlotNo :: SlotNo -> EpochNo
epochFromSlotNo :: SlotNo -> EpochNo
epochFromSlotNo = forall a. Identity a -> a
runIdentity forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *).
HasCallStack =>
EpochInfo m -> SlotNo -> m EpochNo
epochInfoEpoch (Globals -> EpochInfo Identity
epochInfoPure Globals
testGlobals)
slotFromEpoch :: EpochNo -> SlotNo
slotFromEpoch :: EpochNo -> SlotNo
slotFromEpoch = forall a. Identity a -> a
runIdentity forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *).
HasCallStack =>
EpochInfo m -> EpochNo -> m SlotNo
epochInfoFirst (Globals -> EpochInfo Identity
epochInfoPure Globals
testGlobals)
epochSize :: EpochNo -> EpochSize
epochSize :: EpochNo -> EpochSize
epochSize = forall a. Identity a -> a
runIdentity forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *).
HasCallStack =>
EpochInfo m -> EpochNo -> m EpochSize
epochInfoSize (Globals -> EpochInfo Identity
epochInfoPure Globals
testGlobals)
maxKESIterations :: Word64
maxKESIterations :: Word64
maxKESIterations = forall a. ShelleyBase a -> a
runShelleyBase (forall r (m :: * -> *) a. MonadReader r m => (r -> a) -> m a
asks Globals -> Word64
maxKESEvo)
slotsPerKESIteration :: Word64
slotsPerKESIteration :: Word64
slotsPerKESIteration = forall a. ShelleyBase a -> a
runShelleyBase (forall r (m :: * -> *) a. MonadReader r m => (r -> a) -> m a
asks Globals -> Word64
slotsPerKESPeriod)
maxLLSupply :: Coin
maxLLSupply :: Coin
maxLLSupply = Integer -> Coin
Coin forall a b. (a -> b) -> a -> b
$ forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall a. ShelleyBase a -> a
runShelleyBase (forall r (m :: * -> *) a. MonadReader r m => (r -> a) -> m a
asks Globals -> Word64
maxLovelaceSupply)
testSTS ::
forall s.
(BaseM s ~ ShelleyBase, STS s, Eq (State s), Show (State s), ToExpr (State s)) =>
Environment s ->
State s ->
Signal s ->
Either (NonEmpty (PredicateFailure s)) (State s) ->
Assertion
testSTS :: forall s.
(BaseM s ~ ReaderT Globals Identity, STS s, Eq (State s),
Show (State s), ToExpr (State s)) =>
Environment s
-> State s
-> Signal s
-> Either (NonEmpty (PredicateFailure s)) (State s)
-> Assertion
testSTS Environment s
env State s
initSt Signal s
signal (Right State s
expectedSt) = do
forall s (m :: * -> *).
(STS s, BaseM s ~ m) =>
(forall a. m a -> a)
-> Environment s
-> ReaderT
(State s
-> Signal s -> Either (NonEmpty (PredicateFailure s)) (State s))
IO
(State s)
-> Assertion
checkTrace @s forall a. ShelleyBase a -> a
runShelleyBase Environment s
env forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a. Applicative f => a -> f a
pure State s
initSt forall (m :: * -> *) st sig err.
(MonadIO m, MonadReader (st -> sig -> Either err st) m, Show err,
HasCallStack) =>
m st -> sig -> m st
.- Signal s
signal forall (m :: * -> *) st.
(MonadIO m, Eq st, ToExpr st, HasCallStack) =>
m st -> st -> m st
.->> State s
expectedSt
testSTS Environment s
env State s
initSt Signal s
sig predicateFailure :: Either (NonEmpty (PredicateFailure s)) (State s)
predicateFailure@(Left NonEmpty (PredicateFailure s)
_) = do
let st :: Either (NonEmpty (PredicateFailure s)) (State s)
st = forall a. ShelleyBase a -> a
runShelleyBase forall a b. (a -> b) -> a -> b
$ forall s (m :: * -> *) (rtype :: RuleType).
(STS s, RuleTypeRep rtype, m ~ BaseM s) =>
RuleContext rtype s
-> m (Either (NonEmpty (PredicateFailure s)) (State s))
applySTSTest @s (forall sts. (Environment sts, State sts, Signal sts) -> TRC sts
TRC (Environment s
env, State s
initSt, Signal s
sig))
Either (NonEmpty (PredicateFailure s)) (State s)
st forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Either (NonEmpty (PredicateFailure s)) (State s)
predicateFailure
mkHash :: forall a h. HashAlgorithm h => Int -> Hash h a
mkHash :: forall a h. HashAlgorithm h => Int -> Hash h a
mkHash Int
i = coerce :: forall a b. Coercible a b => a -> b
coerce (forall h a.
HashAlgorithm h =>
Version -> (a -> Encoding) -> a -> Hash h a
hashWithEncoder @h Version
shelleyProtVer forall a. EncCBOR a => a -> Encoding
encCBOR Int
i)
getBlockNonce :: forall era. Era era => Block (BHeader (EraCrypto era)) era -> Nonce
getBlockNonce :: forall era. Era era => Block (BHeader (EraCrypto era)) era -> Nonce
getBlockNonce =
forall v. OutputVRF v -> Nonce
mkNonceFromOutputVRF forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall v a. CertifiedVRF v a -> OutputVRF v
certifiedOutput forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall c. BHBody c -> CertifiedVRF c Nonce
bheaderEta forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall c. Crypto c => BHeader c -> BHBody c
bhbody forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall h era. Block h era -> h
bheader