| Safe Haskell | Safe-Inferred | 
|---|---|
| Language | Haskell2010 | 
Cardano.Ledger.NonIntegral
Synopsis
- (***) ∷ (RealFrac a, Enum a, Show a) ⇒ a → a → a
 - exp' ∷ (RealFrac a, Show a) ⇒ a → a
 - ln' ∷ (RealFrac a, Enum a, Show a) ⇒ a → a
 - findE ∷ RealFrac a ⇒ a → a → Integer
 - splitLn ∷ (RealFrac a, Show a) ⇒ a → (Integer, a)
 - scaleExp ∷ RealFrac a ⇒ a → (Integer, a)
 - data CompareResult a
 - taylorExpCmp ∷ RealFrac a ⇒ a → a → a → CompareResult a
 
Documentation
ln' ∷ (RealFrac a, Enum a, Show a) ⇒ a → a Source #
Compute natural logarithm via continued fraction, first splitting integral part and then using continued fractions approximation for `ln(1+x)`
data CompareResult a Source #
Instances
| Show a ⇒ Show (CompareResult a) Source # | |
Defined in Cardano.Ledger.NonIntegral Methods showsPrec ∷ Int → CompareResult a → ShowS # show ∷ CompareResult a → String # showList ∷ [CompareResult a] → ShowS #  | |
| Eq a ⇒ Eq (CompareResult a) Source # | |
Defined in Cardano.Ledger.NonIntegral Methods (==) ∷ CompareResult a → CompareResult a → Bool # (/=) ∷ CompareResult a → CompareResult a → Bool #  | |
taylorExpCmp ∷ RealFrac a ⇒ a → a → a → CompareResult a Source #
Efficient way to compare the result of the Taylor expansion of the exponential function to a threshold value. Using error estimation one can stop early, once it's known the result will certainly be above or below the target value.