Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- (***) ∷ (RealFrac a, Enum a, Show a) ⇒ a → a → a
- exp' ∷ (RealFrac a, Show a) ⇒ a → a
- ln' ∷ (RealFrac a, Enum a, Show a) ⇒ a → a
- findE ∷ RealFrac a ⇒ a → a → Integer
- splitLn ∷ (RealFrac a, Show a) ⇒ a → (Integer, a)
- scaleExp ∷ RealFrac a ⇒ a → (Integer, a)
- data CompareResult a
- = BELOW a Int
- | ABOVE a Int
- | MaxReached Int
- taylorExpCmp ∷ RealFrac a ⇒ a → a → a → CompareResult a
Documentation
ln' ∷ (RealFrac a, Enum a, Show a) ⇒ a → a Source #
Compute natural logarithm via continued fraction, first splitting integral part and then using continued fractions approximation for `ln(1+x)`
data CompareResult a Source #
BELOW a Int | |
ABOVE a Int | |
MaxReached Int |
Instances
Show a ⇒ Show (CompareResult a) Source # | |
Defined in Cardano.Ledger.NonIntegral showsPrec ∷ Int → CompareResult a → ShowS show ∷ CompareResult a → String showList ∷ [CompareResult a] → ShowS | |
Eq a ⇒ Eq (CompareResult a) Source # | |
Defined in Cardano.Ledger.NonIntegral (==) ∷ CompareResult a → CompareResult a → Bool (/=) ∷ CompareResult a → CompareResult a → Bool |
taylorExpCmp ∷ RealFrac a ⇒ a → a → a → CompareResult a Source #
Efficient way to compare the result of the Taylor expansion of the exponential function to a threshold value. Using error estimation one can stop early, once it's known the result will certainly be above or below the target value.